
 1

University of Victoria

Department of Electrical Engineering & Computer Science

ECE 299 – Introduction to Electrical and Computer Engineering Design

Final Report

Summer Term 2020

Alarm Clock Project

August 18, 2020

Matthew Hermary

V00848259

Electrical Engineering

matthermary@gmail.com

August 18, 2020

B01

Branden Voss

V00913539

Electrical Engineering

brandenvoss97@hotmail.com

August 18, 2020

B01

 i

Executive Summary
Electrical and Computer Engineering 299 is an introductory course to engineering design. In

particular, this course is intended to familiarize students with the process of design in the

professional world. Students have become oriented with skills such as creating electrical circuits,

programming microcontrollers, planning and configuring printed circuit boards (PCB), basic

knowledge of electronic components and industry practices [1]. As partial fulfillment of this

course, teams were tasked with designing an alarm clock and implementing it into a PCB layout.

The alarm clock must operate off of an Arduino Uno Rev 3 microcontroller and be capable of the

following [2];

1. Display time in 24-hour format on 7-segment LED’s

2. Allow time to be set or changed as desired

3. Allow alarm time to be set or disabled as desired

4. Trigger alarm of some form based on set time

5. Brightness of LED display to adjust according to ambient light

6. Optional snooze feature for alarm operation

Additionally, teams must present a 3-D model of an enclosure for the alarm clock developed

through the use of software. The enclosure must be compatible to the alarm clocks dimensions

and functionality [2]. One notable feature of the alarm clock presented in this report is the use of

2 7-segement decoders intended to free-up I/O pins on the Arduino. The subsequent report is of

the topic of group 2, section B01’s alarm clock and will develop its design, functionality and

specifications in detail.

 ii

Table of Contents

LIST OF FIGURES .. III

LIST OF TABLES ... III

GLOSSARY .. III

PROJECT GOAL ... 1

CONSTRAINTS .. 1

PROJECT SPECIFIC CONSTRAINTS ... 1
ADDITIONAL CONSTRAINTS... 2

REQUIREMENT SPECIFICATIONS ... 2

PROJECT PLANNING .. 3
CIRCUIT .. 4

7-Segment LED Display ... 5
Calculations .. 7
Brightness ... 9
Push-Button Controls .. 9
Alarm Function ... 10

PCB... 10

TESTING AND VALIDATION ... 11

DISPLAY .. 11
Hardware Testing ... 12
Software Testing ... 12

PUSHBUTTON INTERFACE ... 12
AMBIENT LIGHT SENSING SUBSYSTEM .. 13

RECOMMENDATIONS AND CONCLUSION .. 13

REFERENCES .. 15

APPENDIX A – ANNOTATED CODE ... 16

APPENDIX B – ENCLOSURE DETAILS .. 27

 iii

List of Figures
Figure 1. KiCAD schematic .. 5

Figure 2. TinkerCAD implementation .. 6

Figure 3. LED display circuit.. 8

Figure 4. Chart of Irradiance vs Current ... 9

Figure 5. KiCAD PCB layout ... 11

Figure 6. Alarm clock enclosure ... 27

Figure 7. Enclosure side view ... 27

Figure 8. Enclosure front view.. 27

List of Tables
Table 1. Bill of Materials .. 3
Table 2. Gantt Chart .. 4

Glossary
PCB Printed Circuit Board.

LED Light emitting diode. Electrical component that emits light

file://///Users/brandenvoss/Documents/Second%20Year%20Eng/Summer_2020/ECE299/ECE299_FinalReport.docx%23_Toc48644920
file://///Users/brandenvoss/Documents/Second%20Year%20Eng/Summer_2020/ECE299/ECE299_FinalReport.docx%23_Toc48644921
file://///Users/brandenvoss/Documents/Second%20Year%20Eng/Summer_2020/ECE299/ECE299_FinalReport.docx%23_Toc48644922
file://///Users/brandenvoss/Documents/Second%20Year%20Eng/Summer_2020/ECE299/ECE299_FinalReport.docx%23_Toc48644923
file://///Users/brandenvoss/Documents/Second%20Year%20Eng/Summer_2020/ECE299/ECE299_FinalReport.docx%23_Toc48644924
file://///Users/brandenvoss/Documents/Second%20Year%20Eng/Summer_2020/ECE299/ECE299_FinalReport.docx%23_Toc48645214
file://///Users/brandenvoss/Documents/Second%20Year%20Eng/Summer_2020/ECE299/ECE299_FinalReport.docx%23_Toc48645215

 iv

MOSFET Metal oxide silicon field effect transistor. Used as a type of switch

that allows current to flow from source to drain when a voltage is

applied to its gate

Microcontroller A small computer with memory and programmable input/output

KiCAD Software featuring an integrated environment for schematic design

and PCB layout

 1

Project Goal
Through the use of techniques and topics discussed in ECE 299 and other applicable areas of

study, teams of two are expected to design the layout of an alarm clock PCB and a compatible

alarm clock enclosure. The end product must comply with requirements 1 through 5 outlined in

the executive summary.

Constraints
This section of the report will discuss project specific constraints in addition to other unique

constraints regarding the effects of COVID-19 and the ongoing global pandemic.

Project Specific Constraints
The following constraints are linked specifically to the project itself. Therefore, most of

these constraints are hardware and software related. The first constraint to take note of is

directly related to the hardware. In particular the use of an Arduino Uno Rev 3

microcontroller limited teams to the development of designs compatible with only this

technology. The scope of this constraint in itself encompasses both software and

hardware aspects. These include;

• Arduino output is limited to 40mA

• Number of pins on Arduino, both digital and analog available

• Constrained to Arduino programming language (C programming)

The Arduino limited teams to 13 digital pins and 6 analog pins. This may pose

complications when considering all the functions incorporated into the alarm clock

system. The Arduino time was to be advanced using a the millis function rather than

delay statements which could not appropriately compensate time loss in a system

 2

required to keep real time. Additionally, constraints were placed on the electronic

components available for use under the TinkerCAD circuits software. It is important to

also note that the dimensions of the enclosure and PCB must be suitable for an alarm

clock design implementation. Branching from the latter constraint, the PCB layout would

need to be reasonably compact.

Additional Constraints
Several more constraints that otherwise would not exist were identified due to the

COVID-19 pandemic. Several complications were introduced regarding public health

concerns and thus, ECE 299 in its entirety was required to be delivered online. Therefore,

all instruction and information were given through online tools such as Zoom and

Coursespaces to avoid face to face interaction. Also, all the hardware and programming

was done through the TinkerCAD software as opposed to hands-on lab sessions. More

specifically TinkerCAD restricted the availability of various electrical components and

did not allow for the use of the Arduino clock library which may have provided

alternative regarding software techniques.

Despite the given constraints throughout the design process both the course instructor and the lab

instructors did an excellent job of recreating this course online in order to, as closely as possible,

model the traditional learning experience.

Requirement Specifications
Upon considering the goals and given constraints, Group 2 from lab section B01 developed the

following product in response to the project needs and requirements. The design process can be

conveniently divided into separate parts for simplicity of explanation and understanding. Refer to

 3

Appendix-B of this report for details on the alarm clock enclosure. The subsequent alarm clock

design and functionality is expanded upon in this section of the report.

 Project Planning
This section is intended to show how this project was managed through to completion by

group 2 from lab section B01. A Gantt chart along with a bill of materials is presented.

Table 1. Bill of Materials [3]

 4

The Gantt chart outlines task delegation from project start to finish. The legend in the

bottom left corner colour codes tasks by group member.

Circuit
The circuit designed by group 2 can be seen implemented using the KiCAD Schematics

software in figure below. The circuit is operated using a single Arduino and utilizes four

7-segment LED displays branching from two separate 7-segment decoders. The circuit

includes 5 pushbuttons to control alarm clock functions externally and a phototransistor

configured to control the brightness of the LED display according to ambient light.

Lastly, the system contains a single piezo buzzer to act as the output of the alarm

function. This design makes use of both hardware components and software to operate

properly. These technical characteristics are broken down into the following subsections.

Table 2. Gantt Chart

 5

Refer to Appendix-A for a complete listing of annotated code used for this project.

Figure 1. KiCAD schematic

7-Segment LED Display
The digits that hold time in hours (first two digits) on the LED display are

operated from digital pins D6 through D9. The minute digits (last two digits) are

operated from digital pins D0, D1, D4 and analog pin A3. These pins are

configured as outputs that then go to their respective 7-segment decoders. Each

set of four pins will produce a signal that represents a binary number to be

displayed on the LED in base ten. In order to represent two separate numbers

from the same set of 4 pins, a MOSFET is placed at the common cathode of each

7-segment display. In this manner, the MOSFET’s are used a switches to select

 6

which segment outputs the current number. Take for example, when the display is

required to output ‘12’ on the hour digits the Arduino sends a binary ‘1’ to the

decoder, then the base ten number ‘1’ is sent to both of the hour LED digits. From

here the Arduino activates the MOSFET of the first digit to display the number.

The same is done for the number ‘2’ which will be selected to display on the

second digit. Every time the Arduino outputs a 1 or a 2 the corresponding

MOSFET is switched on and the other off. This is done at a rapid rate so as to be

unnoticed by the human eye. Since each segment is configured as common

cathode, one current limiting resistor is placed at their common ground. This

resistor is valued at 75. The TinkerCAD implementation is shown below.

Figure 2. TinkerCAD implementation

 7

 Calculations
The designed circuit should guarantee that the digital I/O pins of the Arduino

board carry between 10mA and 19mA of current. It is understood that the output

voltage of the Arduino is approximately equal to 5V [4]. Additionally, the

forward voltage of the LEDs are typically 1.9V but have a max of 2.3V [4]. The

following design calculations are presented to aid in the understanding of the

presented circuit. It is important to note a maximum of two 7-segment LEDs can

display a number at any given time. I/O pin 2 supplies the first 7-segment LED.

The following calculations justify the chosen resistor values:

𝑅𝑒𝑞 =
𝑉−𝑉𝑓

𝐼
 (1)

Where V is the voltage output of the Arduino, 𝑉𝑓 is the forward voltage of the

LED and I is the required current limit for each of the pins of the Arduino board

10mA.

𝑅𝑒𝑞 =
5V − 1.9V

0.01𝐴

𝑅𝑒𝑞 = 310

In order to display an “8”, seven of the LED segments must but turned on.

However, each LED shares the same resistor at their common ground. Therefore,

the following calculations are used:

𝑅𝑥 = 𝑅𝑒𝑞  𝑛 (2)

Where x in 𝑅1𝑥 denotes a-f and n is the number or LEDs used in the segment.

𝑅1𝑥 = (310)(7)

𝑅1𝑥 = 2170

 8

The resistance required in each of the inputs to the LED is 2170. This holds true

because of the following:

𝑅𝑒𝑞 = (
1

𝑅1𝑎
+

1

𝑅1𝑏
+

1

𝑅1𝑐
+

1

𝑅1𝑑
+

1

𝑅1𝑒
+

1

𝑅1𝑓
+

1

𝑅1𝑔
)−1 (3)

The above calculations are to be used for the remaining three LEDs. The

calculated values for the remaining 7-segments is valid provided the values used

in the calculations are relative to the LED being examined. Also, each resistor

connected to the same 7-segment display is an equal portion of its 𝑅𝑒𝑞 .

Figure 3. LED display circuit

Despite the calculated resistance value of 310, the chosen value for the single

current limiting resistor common to all four 7-segment displays is 75. This was

selected through trial and error and was observed to provide the optimal

Single resistor

 9

brightness in our system. A resistance value of 310 was unsatisfactory and

complications arose from the method used to display digits. The digits were not

visibly clear and combinations of different digits were displayed on the segments.

 Brightness
As specified in the project requirements, the LED display must orient its

irradiance according to ambient light. The LED brightness is required to imitate

the ambient light. Therefore, brighter ambient light corresponds to a brighter

display; the inverse is also true.

Current vs. irradiance is a linear

relationship described by figure below.

The current was measured in the 7-

segment LEDS’s using in ammeter

and was found to have a range of

20mA under maximum ambient light

conditions and 11mA for no light. 20mA corresponds to an irradiance of

approximately 13mW/cm2.

 Push-Button Controls
The circuit consists of five pushbuttons; two of which are set up as interrupts and

the remaining three are polled. The two interrupt buttons are responsible for

telling the Arduino that the user would like to change the clock time and the alarm

time respectively. Once one mode is selected the other three buttons will be polled

by the Arduino. The first of the three buttons which is connected to A0 of the

Arduino is necessary for selecting the digit to be changed. The following two

Figure 4. Chart of Irradiance vs Current

 10

buttons will either increment or decrement the digit value. These pins are

connected to A2 and A1 respectively.

Alarm Function
The alarm for this design is a single piezo buzzer. The buzzer is configured in a

simple circuit to work with the programmed Arduino. The buzzer is connected to

pin D13. The alarm will be triggered once the alarm set time matches the current

time on the clock.

PCB
The previous circuit schematic developed using the KiCAD schematics software was

then used to develop the printed circuit board layout. This PCB design is configured on a

two layered board and is 116.586mm in length by 72.136mm in width. Figure shows the

KiCAD PCB editor window. Some important measurements include [6];

• Track width of 10mils

• Via size of 40mils and drill of 20mils

• Ground track width of 20mils

• Ground via size of 45mils and drill of 25mils

 11

These specifications are necessary to support the functions and capabilities of the

Arduino Uno Rev 3 and its constituent circuit components.

Testing and Validation
This section of the report will discuss methods and procedures taken by group 2 in section B01

to test their design and validate their design elements and choices.

Display
The display testing was divided up into two parts: hardware and software where the

wiring and capability of the decoder were tested, followed by testing of the function

which called numbers to be displayed respectively.

Figure 5. KiCAD PCB layout

 12

 Hardware Testing
To test the functionality of the 7-segment display decoder combination, inputs

were hardcoded and fed into the decoder as their original binary numbers. During

this time, no multiplexing of the displays was happening. For example, if 0001

and 0010 were fed into the hour and minute decoder respectively, the four

displays would show 1122. Each bit was written with a digitalWrite high or low

to the respective input pin.

 Software Testing
Once the hardware was functioning properly, two identical functions were

written: displayh and displaym for displaying hour and minutes respectively.

These functions were tested similarly to the hardware, except the digitalWrite was

handled within the function, and the only parameter passed through was a digit to

be displayed. This was first tested by passing numbers directly, then were tested

by passing the integer variables that contains the minute or hour digits for display.

Pushbutton interface
The two interrupt pushbuttons were designed to only illuminate the selected segment

when in the function. For example, upon pushing the button segment 1 would be

illuminated, and 2 to 4 would be dark. This meant that the alarm was either in the

AlarmSet or TimeSet state depending on which button was pushed. To test the

functionality of the other buttons, the selected digit was adjusted up or down to test them,

afterwards, the last button was pressed which iterated to the next digit to be changed. If

the SetTime function worked properly, the newly chosen time would be displayed. If the

 13

SetAlarm function worked properly, the alarm would ring when the time matched the

newly selected alarm time.

Ambient Light Sensing Subsystem
The ambient light sensing was done using voltage feedback from a simple phototransistor

circuit. The voltage was read using an Analog pin and put out to the MOSFET using a

Digital PWM pin. The Analog input reads in as values ranging from 0-1023, and the

Digital PWM takes values from 0-255. This switch was done using the map function and

the snippet of code adc = map(adc, 45, 1010, 50, 255). The input readings were

displayed using Serial.println(adc) both before and after the conversion; this was printed

while the simulation ran, and the phototransistor values were checked to see if they were

modified and adjusted to the different ambient light. Once the values were shown to be

adjusting and scaling properly, an ammeter was added to the circuit to ensure that the

current was changing with different ambient light values.

Recommendations and Conclusion
Upon completion of this project, group 2 from section B01 successfully designed and

implemented an alarm clock circuit and program. Extensive work was done to both test and

develop the design under the project requirements. The implemented design successfully meets

the goal specifications outlined in the executive summary. Furthermore, the alarm clock

adequately holds 24-hour time along with an alarm function both of which can be adjusted to a

desired value through external input. This alarm clock design also features a snooze option on

the alarm. However, group 2 encountered some challenges when applying the phototransistor

circuit to adjust display brightness according to ambient light.

 14

Given a second chance to recreate this project in hindsight, there are some aspects that would be

done differently. One particular aspect group 2 would address is to add resistors to each

individual LED segment in order to better control the display brightness. This is due largely to

the fact that different numbers use different segments and additional resistors will add some

consistency to the current through the displays.

This project has given both team members the opportunity to develop a better understanding of

the design process along with its limitations and challenges. It is with confidence that we can

move forward with the benefits of learning from these challenges and adversities.

 15

References

[1] 2019. Kingbright SC56-11EWA 14.22 Mm (0.56 Inch) Single Digit Numeric Display. 1st

ed. Kingbright, pp.1-4.

[2] Mouser.com. 2020. Kingbright Leds Distributor | Mouser. [online] Available at:

<https://www.mouser.com/manufacturer/kingbright/> [Accessed 30 May 2020].

[3] Store.arduino.cc. 2020. Arduino Uno Rev3 | Arduino Official Store. [online] Available

at: <https://store.arduino.cc/usa/arduino-uno-rev3> [Accessed 30 May 2020].

[4] Digikey.ca. 2020. Digikey Electronics - Electronic Components Distributor. [online]

Available at:

<https://www.digikey.ca/?utm_adgroup=General&utm_source=google&utm_medium=c

pc&utm_campaign=EN_Brand_General_E&utm_term=digikey%20canada&productid=

&gclid=CjwKCAjw5cL2BRASEiwAENqAPt40mJnnZsI_PpX46xuYgrZwV4qnrwC9V

ARGciUG752xn3kX4dh06BoC6noQAvD_BwE> [Accessed 30 May 2020].

[5] I. Thirumarai. ECE 299. Class Lecture, Topic: “Project Planning” Electrical and

Computer Engineering, University of Victoria, Victoria, BC, June 17, 2020.

[6] I. Thirumarai. ECE 299. Lab Report - Experiment 4, “ECE 299 – Intro to ECE Design”

Lab Experiment 4 datasheet, June 25, 2020 [Accessed 25 June 2020].

[7] I. Thirumarai. ECE 299. Class Lecture, Topic: “Ambient light sensing using

phototransistor” Electrical and Computer Engineering, University of Victoria, Victoria,

BC, June 2, 2020.

[8] RS Components, “Light Dependent Resistors” 232 3616 datasheet, Mar. 1997 [Accessed

6 June 2020.

 16

Appendix A – Annotated Code
The following is a complete listing of the code used in this project. The code is extensively

commented and is made readily available in this section to whom it may interest.

const int m1 = 10; //Sets pin 9 as a parameter for mosfet 1
const int m2 = 11; //Sets pin 10 as a parameter for mosfet 2
const int m3 = 12; //Sets pin 11 as a parameter for mosfet 3
const int m4 = 18; //Sets pin 12 as a parameter for mosfet 4
const long interval = 10000; //Interval of 1000 gives a second
unsigned long previousMillis = 0; //Millis variable to compare time elapsed
int min = 0; //2-digit minute value
int min_dig1; //1-digit minute value holding the minute
int min_dig2; //1-digit minute value holding the 10th minute
int hour = 0; //2-digit hour value
int hour_dig1 = 0; //1-digit hour value holding hour
int hour_dig2 = 0; //1-digit hour value holding the 10th hour
int time = 0;
int alarm_time = 0;
int alarm_min = 0;
int alarm_hour = 0;
bool alarm_on = true;
bool alarm_ringing = false;

void setup() //setup function maps pins
{
 pinMode (0, OUTPUT); //Bit 0 on minute segments to decoder
 pinMode (1, OUTPUT); //Bit 1 on minute segments to decoder
 pinMode (4, OUTPUT); //Bit 2 on minute segments to decoder
 pinMode (A5, OUTPUT); //Bit 3 on minute segments to decoder
 pinMode (6, OUTPUT); //Bit 0 on hour segments to decoder
 pinMode (7, OUTPUT); //Bit 1 on hour segments to decoder
 pinMode (8, OUTPUT); //Bit 2 on hour segments to decoder
 pinMode (9, OUTPUT); //Bit 3 on hour segments to decoder
 pinMode (10, OUTPUT); //Output 10 controls NMOS 1
 pinMode (11, OUTPUT); //Output 11 controls NMOS 2
 pinMode (12, OUTPUT); //Output 12 controls NMOS 3
 pinMode (18, OUTPUT); //Output 13 controls NMOS 4
 pinMode (13, OUTPUT); //Output LED for testing alarm
 pinMode (A5, INPUT); //Analog in for reading ambient light
 pinMode (5, OUTPUT); //Analog write for PWM brightness on display
 pinMode (2, INPUT_PULLUP); //Will trigger set time ISR
 pinMode (3, INPUT_PULLUP); //Will trigger set alarm ISR
 pinMode (14, INPUT_PULLUP); //Polling on A0 for input in time and alarm set
 pinMode (15, INPUT_PULLUP); //Polling on A1 for input in time and alarm set
 pinMode (16, INPUT_PULLUP); //Polling on A2 for input in time and alarm set
}

void select(int segm, int segh)
 //Takes in a number 1 or 2 and 3 or 4 and turns on that MOSFET for the displays
{
 switch(segm)
 {
 case 1:
 digitalWrite(m1, HIGH);
 digitalWrite(m2, LOW);
 break;

 case 2:
 digitalWrite(m1, LOW);
 digitalWrite(m2, HIGH);
 break;

 17

 default:
 digitalWrite(m1, LOW);
 digitalWrite(m2, LOW);
 break;
 }
 switch(segh)
 {
 case 3:
 digitalWrite(m3, HIGH);
 digitalWrite(m4, LOW);
 break;

 case 4:
 digitalWrite(m3, LOW);
 digitalWrite(m4, HIGH);
 break;

 default:
 digitalWrite(m3, LOW);
 digitalWrite(m4, LOW);
 break;
 }
}

void displaym(int num)
//Displays a number in the minute segments
{
 switch(num)
 {
 case 0:
 //Illuminates segments to display "0"
 digitalWrite(0, LOW); //input bit 0 low
 digitalWrite(1, LOW); //input bit 1 low
 digitalWrite(4, LOW); //input bit 2 low
 digitalWrite(A3, LOW); //input bit 3 low
 break;

 case 1:
 //Illuminates segments to display "1"
 digitalWrite(0, HIGH); //input bit 0 high
 digitalWrite(1, LOW); //input bit 1 low
 digitalWrite(4, LOW); //input bit 2 low
 digitalWrite(A3, LOW); //input bit 3 low
 break;

 case 2:
 //Illuminates segments to display "2"
 digitalWrite(0, LOW); //input bit 0 low
 digitalWrite(1, HIGH); //input bit 1 high
 digitalWrite(4, LOW); //input bit 2 low
 digitalWrite(A3, LOW); //input bit 3 low
 break;

 case 3:
 //Illuminates segments to display "3"
 digitalWrite(0, HIGH); //input bit 0 high
 digitalWrite(1, HIGH); //input bit 1 high
 digitalWrite(4, LOW); //input bit 2 low
 digitalWrite(A3, LOW); //input bit 3 low
 break;

 case 4:
 //Illuminates segments to display "4"
 digitalWrite(0, LOW); //input bit 0 low

 18

 digitalWrite(1, LOW); //input bit 1 low
 digitalWrite(4, HIGH); //input bit 2 high
 digitalWrite(A3, LOW); //input bit 3 low
 break;

 case 5:
 //Illuminates segments to display "5"
 digitalWrite(0, HIGH); //input bit 0 high
 digitalWrite(1, LOW); //input bit 1 low
 digitalWrite(4, HIGH); //input bit 2 high
 digitalWrite(A3, LOW); //input bit 3 low
 break;

 case 6:
 //Illuminates segments to display "6"
 digitalWrite(0, LOW); //input bit 0 low
 digitalWrite(1, HIGH); //input bit 1 high
 digitalWrite(4, HIGH); //input bit 2 high
 digitalWrite(A3, LOW); //input bit 3 low
 break;

 case 7:
 //Illuminates segments to display "7"
 digitalWrite(0, HIGH); //input bit 0 high
 digitalWrite(1, HIGH); //input bit 1 high
 digitalWrite(4, HIGH); //input bit 2 high
 digitalWrite(A3, LOW); //input bit 3 low
 break;

 case 8:
 //Illuminates segments to display "8"
 digitalWrite(0, LOW); //input bit 0 low
 digitalWrite(1, LOW); //input bit 1 low
 digitalWrite(4, LOW); //input bit 2 low
 digitalWrite(A3, HIGH); //input bit 3 high
 break;

 case 9:
 //Illuminates segments to display "9"
 digitalWrite(0, HIGH); //input bit 0 high
 digitalWrite(1, LOW); //input bit 1 low
 digitalWrite(4, LOW); //input bit 0 low
 digitalWrite(A3, HIGH); //input bit 3 high
 break;

 default: // no matches
 num = 0;
 break;
 }
}

void displayh(int num)
//Displays a number on the hour segments
{
 switch(num)
 {
 case 0:
 //Illuminates segments to display "0"
 digitalWrite(6, LOW); //input bit 0 low
 digitalWrite(7, LOW); //input bit 1 low
 digitalWrite(8, LOW); //input bit 2 low
 digitalWrite(9, LOW); //input bit 3 low

 19

 break;

 case 1:
 //Illuminates segments to display "1"
 digitalWrite(6, HIGH); //input bit 0 high
 digitalWrite(7, LOW); //input bit 1 low
 digitalWrite(8, LOW); //input bit 2 low
 digitalWrite(9, LOW); //input bit 3 low
 break;

 case 2:
 //Illuminates segments to display "2"
 digitalWrite(6, LOW); //input bit 0 low
 digitalWrite(7, HIGH); //input bit 1 high
 digitalWrite(8, LOW); //input bit 2 low
 digitalWrite(9, LOW); //input bit 3 low
 break;

 case 3:
 //Illuminates segments to display "3"
 digitalWrite(6, HIGH); //input bit 0 high
 digitalWrite(7, HIGH); //input bit 1 high
 digitalWrite(8, LOW); //input bit 2 low
 digitalWrite(9, LOW); //input bit 0 low
 break;

 case 4:
 //Illuminates segments to display "4"
 digitalWrite(6, LOW); //input bit 0 low
 digitalWrite(7, LOW); //input bit 1 low
 digitalWrite(8, HIGH); //input bit 2 high
 digitalWrite(9, LOW); //input bit 3 low
 break;

 case 5:
 //Illuminates segments to display "5"
 digitalWrite(6, HIGH); //input bit 0 high
 digitalWrite(7, LOW); //input bit 1 low
 digitalWrite(8, HIGH); //input bit 2 high
 digitalWrite(9, LOW); //input bit 3 low
 break;

 case 6:
 //Illuminates segments to display "6"
 digitalWrite(6, LOW); //input bit 0 low
 digitalWrite(7, HIGH); //input bit 1 high
 digitalWrite(8, HIGH); //input bit 2 high
 digitalWrite(9, LOW); //input bit 3 low
 break;

 case 7:
 //Illuminates segments to display "7"
 digitalWrite(6, HIGH); //input bit 0 high
 digitalWrite(7, HIGH); //input bit 1 high
 digitalWrite(8, HIGH); //input bit 2 high
 digitalWrite(9, LOW); //input bit 3 low
 break;

 case 8:
 //Illuminates segments to display "8"
 digitalWrite(6, LOW); //input bit 0 low
 digitalWrite(7, LOW); //input bit 1 low

 20

 digitalWrite(8, LOW); //input bit 2 low
 digitalWrite(9, HIGH); //input bit 3 high
 break;

 case 9:
 //Illuminates segments to display "9"
 digitalWrite(6, HIGH); //input bit 0 high
 digitalWrite(7, LOW); //input bit 1 low
 digitalWrite(8, LOW); //input bit 2 low
 digitalWrite(9, HIGH); //input bit 3 high
 break;

 default: // no matches
 num = 0;
 break;
 }
}

void set_alarm()
{
 int iter = 0;
 alarm_on == true;
 alarm_hour = time/100;
 alarm_min = time%100;
 //Set the alarm time
 while(iter == 0)
 {
 select(0, 4); //Sets MOSFET 4 high others low
 //Adjust 10th hour
 if(digitalRead(15) == LOW)
 {
 //Increment hour by 10
 delay(100);
 alarm_hour = alarm_hour + 10;
 delay(100);
 if(alarm_hour >= 24)
 {
 alarm_hour = alarm_hour - 24;
 }
 }
 if(digitalRead(16) == LOW)
 {
 //Decrement hour by 10
 delay(100);
 alarm_hour = alarm_hour - 10;
 delay(100);
 if(alarm_hour < 0)
 {
 alarm_hour = alarm_hour + 24;
 }
 }

 //Display number
 displayh(alarm_hour/10);
 delay(100);

 if(digitalRead(14) == LOW)
 {
 delay(100);
 iter++;
 delay(100);
 }
 }//While(iter == 0)

 while(iter == 1)
 {

 21

 select(0, 3); //Sets MOSFET 3 high others low

 //Adjust hour
 if(digitalRead(15) == LOW)
 {
 //Increment hour by 1
 delay(100);
 alarm_hour++;
 delay(100);
 if(alarm_hour >= 24)
 {
 alarm_hour = alarm_hour - 24;
 }
 }
 if(digitalRead(16) == LOW)
 {
 //Decrement hour by 1
 delay(100);
 alarm_hour--;
 delay(100);
 if(alarm_hour < 0)
 {
 alarm_hour = alarm_hour + 24;
 }
 }

 //Display number
 displayh(alarm_hour%10);
 delay(10);

 if(digitalRead(14) == LOW)
 {
 delay(100);
 iter++;
 delay(100);
 }
 }//While(iter == 1)

 while(iter == 2)
 {
 select(2, 0); //Sets MOSFET 2 high others low
 //Adjust 10th minute

 if(digitalRead(15) == LOW)
 {
 //Increment minute by 10
 delay(100);
 alarm_min = alarm_min + 10;
 delay(100);
 if(alarm_min >= 60)
 {
 alarm_min = alarm_min - 60;
 }
 }
 if(digitalRead(16) == LOW)
 {
 //Decrement minute by 10
 delay(100);
 alarm_min = alarm_min - 10;
 delay(100);
 if(alarm_min < 0)
 {
 alarm_min = alarm_min + 60;
 }
 }
 //Display number

 22

 displaym(alarm_min/10);
 delay(10);

 if(digitalRead(14) == LOW)
 {
 delay(100);
 iter++;
 delay(100);
 }
 }//While(iter == 2)

 while(iter == 3)
 {
 select(1, 0); //Sets MOSFET 1 high others low

 //Adjust minute
 if(digitalRead(15) == LOW)
 {
 //Increment minute by 1
 delay(100);
 alarm_min++;
 delay(100);
 if(alarm_min >= 60)
 {
 alarm_min = alarm_min - 60;
 }
 }
 if(digitalRead(16) == LOW)
 {
 //Decrement minute by 1
 delay(100);
 alarm_min--;
 delay(100);
 if(alarm_min < 0)
 {
 alarm_min = alarm_min + 60;
 }
 }

 //Display number
 displaym(alarm_min%10);
 delay(10);
 if(digitalRead(14) == LOW)
 {
 delay(100);
 iter++;
 delay(100);
 }
 }//While(iter == 3)
 //Sets individual digits to new time
 alarm_time = alarm_hour*100 + alarm_min;
}

void set_time()
{
 int iter = 0;
 hour = time/100;
 min = time%100;
 //Set the time
 while(iter == 0)
 {
 select(0, 4); //Sets MOSFET 4 high others low
 //Adjust 10th hour
 if(digitalRead(15) == LOW)
 {
 //Increment hour by 10

 23

 delay(100);
 hour = hour + 10;
 delay(100);
 if(hour >= 24)
 {
 hour = hour - 24;
 }
 }
 if(digitalRead(16) == LOW)
 {
 //Decrement hour by 10
 delay(100);
 hour = hour - 10;
 delay(100);
 if(hour < 0)
 {
 hour = hour + 24;
 }
 }

 //Display number
 displayh(hour/10);
 delay(100);

 if(digitalRead(14) == LOW)
 {
 delay(100);
 iter++;
 delay(100);
 }
 }//While(iter == 0)

 while(iter == 1)
 {
 select(0, 3); //Sets MOSFET 3 high others low
 time = hour*100 + min;
 hour_dig1 = hour%10;
 hour_dig2 = hour/10;
 min_dig1 = min%10;
 min_dig2 = min/10;
 digitalWrite(13, LOW);//TESTING
 //Adjust hour
 if(digitalRead(15) == LOW)
 {
 //Increment hour by 1
 delay(100);
 hour++;
 delay(100);
 if(hour >= 24)
 {
 hour = hour - 24;
 }
 }
 if(digitalRead(16) == LOW)
 {
 //Decrement hour by 1
 delay(100);
 hour--;
 delay(100);
 if(hour < 0)
 {
 hour = hour + 24;
 }
 }

 //Display number

 24

 displayh(hour%10);
 delay(10);

 if(digitalRead(14) == LOW)
 {
 delay(100);
 iter++;
 delay(100);
 }
 }//While(iter == 1)

 while(iter == 2)
 {
 select(2, 0); //Sets MOSFET 2 high others low
 //Adjust 10th minute

 if(digitalRead(15) == LOW)
 {
 //Increment minute by 10
 delay(100);
 min = min + 10;
 delay(100);
 if(min >= 60)
 {
 min = min - 60;
 }
 }
 if(digitalRead(16) == LOW)
 {
 //Decrement minute by 10
 delay(100);
 min = min - 10;
 delay(100);
 if(min < 0)
 {
 min = min + 60;
 }
 }

 //Display number
 displaym(min/10);
 delay(10);
 if(digitalRead(14) == LOW)
 {
 delay(100);
 iter++;
 delay(100);
 }
 }//While(iter == 2)

 while(iter == 3)
 {
 select(1, 0); //Sets MOSFET 1 high others low

 //Adjust minute
 if(digitalRead(15) == LOW)
 {
 //Increment minute by 1
 delay(100);
 min++;
 delay(100);
 if(min >= 60)
 {
 min = min - 60;
 }
 }

 25

 if(digitalRead(16) == LOW)
 {
 //Decrement minute by 1
 delay(100);
 min--;
 delay(100);
 if(min < 0)
 {
 min = min + 60;
 }
 }

 //Display number
 displaym(min%10);
 delay(10);
 if(digitalRead(14) == LOW)
 {
 delay(100);
 iter++;
 delay(100);
 }
 }//While(iter == 3)
 //Sets individual digits to new time
 time = hour*100 + min;
 hour_dig1 = hour%10;
 hour_dig2 = hour/10;
 min_dig1 = min%10;
 min_dig2 = min/10;
}

void loop() //loop function
{
 unsigned long currentMillis = millis();
 if(currentMillis - previousMillis >= interval)
 {
 previousMillis = currentMillis;
 min++;

 if(min >= 60)
 {
 min = 0; //Wraps minute around
 hour++; //Increments hour
 if (hour >= 24)
 {
 hour = 0; //Resets hour to zero on wraparound in 24hour mode
 }
 hour_dig1 = hour%10;
 hour_dig2 = hour/10;
 }
 min_dig1 = min%10; //Calculates minute value
 min_dig2 = min/10; //Calculates 10th minute value
 time = hour*100 + min;
 //Check alarm step
 if(alarm_on == true && time == alarm_time)
 {
 buzzer();
 }

 }//End Timekeeper
 if(digitalRead(14) == LOW && alarm_on == true && alarm_ringing == true)
 {
 alarm_on = false;
 noTone(13);
 delay(100);
 }

 26

 if(digitalRead(15) == LOW && alarm_on == true && alarm_ringing == true)
 {
 noTone(13);
 alarm_time = (alarm_time + 3);
 delay(100);
 }

 int adc = analogRead(5);
 adc = map(adc, 45, 1010, 50, 255);
 analogWrite(5, adc);
 attachInterrupt(digitalPinToInterrupt(2), set_time, FALLING);
 attachInterrupt(digitalPinToInterrupt(3), set_alarm, FALLING);
 select(1,3);
 displaym(min_dig1);
 displayh(hour_dig1);
 delay(10);

 select(2,4);
 displaym(min_dig2);
 displayh(hour_dig2);
 delay(10);
}

void buzzer()
{
 tone(13, 100);
 alarm_ringing = true;
}

 27

Appendix B – Enclosure Details
Through the use of TinkerCAD 3-D, group 2 was able to develop a suitable enclosure for the

alarm clock hardware. This model is displayed in figure. The enclosure is compatible to the

alarm clock PCB and Arduino

microcontroller both functionally and

dimensionally. The model has a transparent

front face intended to exhibit the PCB and

circuitry inside the enclosure. Group 2 felt

that it would be a unique design feature to

display the work put into this project in this

manner. The enclosure has through holes

arranged in a rectangle allowing the PCB to be fixed. The spacer pegs allow the Arduino to sit

between the PCB and the back wall of the model and an oval shaped hole is placed in the back in

order for necessary power cables to be routed into the enclosure. Additionally, there are five

vertical holes for the buttons that set both alarm and clock time as well as the alarm shut off and

snooze option. The design also contains several small holes oriented in a radial fashion on the

side wall intended to allow the alarm sound to be heard clearly outside the structure.

Figure 6. Alarm clock enclosure

Figure 7. Enclosure side

view

Figure 8. Enclosure front view

	List of Figures
	List of Tables
	Glossary
	Project Goal
	Constraints
	Project Specific Constraints
	Additional Constraints

	Requirement Specifications
	Project Planning
	Circuit
	7-Segment LED Display
	Calculations
	Brightness
	Push-Button Controls
	Alarm Function

	PCB

	Testing and Validation
	Display
	Hardware Testing
	Software Testing

	Pushbutton interface
	Ambient Light Sensing Subsystem

	Recommendations and Conclusion
	References
	Appendix A – Annotated Code
	Appendix B – Enclosure Details

